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Using the canonical problem of N separate electron pairs, the N dependence 
of approximate multireference CI schemes is analyzed. When the DCI is 
taken as multireference space, the second order Quasi Degenerate Many 
Body Perturbation Theory (QD(MB)PT) gives twice the expected correction, 
while the CIPSI algorithm gives 66% of it, and the MRDCI a vanishing part 
of it. A modified QDPT effective hamiltonian, and a combination of CIPSI 
and QDPT algorithms seem to give better trends. 
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1. Introduction 

From the very beginning of its development, the Many Body Perturbation Theory 
(MBPT) [1] insisted on the N-dependance of the various treatments of the 
correlation problem. The rejection of the Brillouin-Wigner approach [1] was 
based on this criterion while the linked cluster theorem [2] allowed understanding 
of the success of the Rayleigh Schrfdinger expansion. The failure of the CI 
truncation to the doubly excited determinants (DCI) was clearly understood as 
due to the normalization of the wave function; this normalization introduces 
some unlinked contributions which would be cancelled by the unlinked contribu- 
tions involving the quadruple (or higher) excitations. To avoid the normalization 
defect, Davidson [3, 4] proposed therefore an approximate correction for the 
correlation energy e . . . . .  

8 . . . .  = eDCi(2 - co 2) (1) 
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later modified by Siegbahn [5] 

1 
e .... = eDCi X --~, (2) 

Co 

where c 2 is the weight of the Ground State determinant in the normalized DCI 
eigenvector. 

During the last ten years various schemes have been proposed to improve the 
convergence of the CI expansion by starting from multireference (or multi- 
configurational) wave functions determined by a preliminary CI procedure. The 
MRDCI (Multireference Double CI) [6] or the CIPSI [7] schemes belong to 
that category (see also Refs. 8-13). Another class of procedures uses the so-called 
Quasi Degenerate (Many Body) Perturbation Theory (QDPT) [14, 15] which 
builds in a perturbative manner an effective Hamiltonian restricted to a finite 
"model space" of n determinants, the n eigenvalues of which converge to n 
exact eigenvalues of the total Hamiltonian. 

The present paper tries to analyse the N-dependence behaviour of some of 
these schemes. To do this, we use the canonical model problem previously used 
for the N-dependence study of the usual single reference expansion [3, 16, 17]. 
This model problem concerns N independent (non interacting) subsystems; for 
sake of simplicity, these subsystems are supposed to be (i) identical, (ii) reduced 
to an electron pair (He atoms or H2 molecules), (iii) treated in a two MO basis 
set. The problem is treated using localized MOs (for the N dependence problem 
in a delocalized approach see Ref. 17). The first part of the paper recalls briefly 
some well-known results for the single reference expansion, using a convenient 
trick. This trick will be used in Sect. 2 for multireference or effective Hamiltonian 
approaches. 

2. The Single Reference Approach 

In the model problem, the N doubly excited determinants do not interact and 
have identical energies AE, the Ground State energy being taken as conventional 
zero; the ground state determinant ~bo interacts through identical matrix elements 
h with all doubly excited determinants q~j. If for each system, one has one 
occupied MO ~ and one virtual MO ~p* 

h =(~i~i]F~ 2 r 
The partitioning technique [19] allows one to show that the energy lowering of 
the ground state 

e ~~ = 1 -  1+ N(~-~ (3) 

behaves as hx/Nwhen N tends to infinity. An alternative demonstration consists 
in introducing an artificial symmetry [3]. The separated molecules may be 
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supposed to be disposed around a regular circle; this will not change the result 
and allows to reduce the (iV + 1) dimensional problem to a 2-dimensional problem 
since the ground state is totally symmetrical and there is only one totally 
symmetrical linear combination of doubly excited determinants 

,;bD= 1/~/~(~r177 (4) 

( r 1 6 2  = 4Nh (5) 

<r IHl r  = ,~:'. (6) 

The same pseudo symmetry transformation, may be performed on the 
N ( N - 1 ) / 2  quadruple configurations, which may be reduced to the totally 
symmetrical combination (as mentioned by Davidson and Silver [4]) 

4,9 = ~ / N ( N -  1) x<I 

where r is doubly excited on both I and J subsystems. In the same way the 
6-time excited configurations may be combined into 

en  - 4 N ( N -  1 ) ( N -  2) ,<,<K ]" 

The full CI matrix may be reduced to a N dimensional matrix the structure of 
which is pictured in Fig. 1. The detail of the transformation of the off-diagonal 
element (r will be given below. 

As long as one is interested in the DCI only, it is clear that when N increases, 
the off-diagonal element of the 2 x 2 matrix, ~/Nh, becomes much larger than 
AE and the stabilization of the ground states becomes -~,/Nh, the eigenvector 
tends to be 

1 1 
~/DCI ~-~" 1/~/2(~b0- eD)  = - - 7 = ( q ~ 0 - - ~  et/ .  (9) 

,/2 \ ~/N ~ / 

The eigenvector of the double CI diagonalization tends to have an equal weight 
on the Ground State determinant and on the doubly excited ones. This result 
should be compared with the exact solution, which is the product of the solutions 
for each subsystem 

O= II (A]r (10) 
i=l,N 

where Z and t~ depend on h and AE. Developing that wave function on its 
lowest excitations components gives 

-- ~ N r  r  �9 ' 
I 

= A N-l ( ; tr  0 + ~ g N e D )  + ' " .  (11) 
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Fig. 1. Structure of the CI matrix 
(a) in the basis of determinants 
(b) after symmetry transformation 

Then the component  of the exact wave function on &D, i.e. on the Doubly 
Excited determinants,  is 4N/zA -1 times larger than the Ground  State deter-  
minant  component ;  in terms of weights, it means that  the ratio (~,  C2)/C2o tends 
to N(~/A) 2 in the exact solution while it tends to 1 in the D C I  solution. The 
D C I  eigenvector overest imates qualitatively the importance of the Ground  State 
determinant  with respect to the doubly excited ones. 

As explicit in Eq. (9), it becomes clear that c~ 1 tends to ~ when N tends to infinity 
in the D C I  approximation.  Then the Davidson 's  correction will tend to multiply 
the DCI  correlation energy by a factor 3 (cf. Eq. (1)); the Davidson 's  corrected 
D C I  energy will behave as 3 ~/Nh instead of the expected -N(h2/AE) 
variation [20]. This correction fails to give the correct asymptotic behaviour  of 
the correlation energy. If one goes to the Siegbahn correction, the multiplying 
factor is equal to 2, 

Siegb -2x /N  h when N ~ oo. E c o r r  

As previously noticed [3, 20] these corrections can only compensate  the low 
order defects, i.e. the effect of the quadruply excited determinants  to compensate  
part  of the normalization defect; they cannot insure a satisfactory behaviour of 
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the energy, since the wave function involves higher and higher levels of excita- 
tions. A very simple formula has been proposed later on by Davidson and 
Silver [3] 

1 - e ~ \  / co ~ 
Ecorr = EDCIt I -]- ~---2---'T ] ~--- EDCI~2C 0 - - ' 7 ~  1 )" (12) 

\ LC o -- 11 

The behaviour of co 2 as a function of N for large N is easy to establish from 
perturbation theory, starting from rotated wave functions 

1 1 
~1 = 7~(~o-~D), ~2=~(~o+~,,) .  

The DCI matrix is written as 

2 

the first-order corrected lowest eigenvector of which is 

1 ~E 
0 = ~ ( ~ o -  ~,,) + 4$--0-~-~(~o + ~D) + . . .  

c o - ~ ( 1  ~E + 4 - ~ + ' "  ") (13) 

and the corrected correlation energy becomes 

e . . . .  = - 4 N h  0 . 5  = - N  
2tE/24N h AtE 

which has the right behaviour. One may wonder why formula (12) is not 
frequently used, while Eq. (1) received hundreds of applications. 

3. Multireference Schemes 

3.1. CIPSI with a DCI variational zeroth order wave function 

The CIPSI algorithm [7] consists in perturbing a multiconfigurational zeroth 
order wave function resulting from a preliminary variational CI among the most 
important determinants for the considered state. In the canonical problem this 
leads to define the zeroth order wave function on the DCI basis of determinants. 
For large N, 

0 + 1/42(&o ' 0D), 
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and its zeroth order energy, in the barycenter definition of the unperturbed 
hamiltonian [7], is the mean value of the diagonal zeroth order hamiltonian in 
the basis of determinants 

h E  
EO(t~DCl) = �89 4,Dlnol4,o - 4'D)--> T when N ---> oo. 

The second-order effect of the quadruple excitations on ~DCX is easily calculated 
as a sum over the quadruply excited determinants ~bjK 

, 

2 sK quadr. AE 
(J<K) - - -  2AE 

2 

(14) 

Each of the N(N-1) /2  quadruply excited determinants ~bts interacts with two 
doubly excited determinants 4~ and 4~s 

x/2h 

N 

leading to a second order correction -(2h2/NAE)(2) 

The total second order correction is then 

__ 2 h 2 [2"x 
e(Z)=N(Nff 1 ) • 1 6 3  = - ( N - 1 )  ~-~,~,. (15) 

When CIPSI starts from the variational result of the double CI, the first order 
energy only gives a correction proportional to x/N, but the second order effect 
of the quadruple excitations restores the proportionality to the number of 
particles. However  the size inconsistence of the variational wave function results 
in an underestimation of the correlation; for large N the error reaches one third 
of the correlation energy. 

3.2. MRDCI 
The MRDCI  [6] process is based on the same selection idea as the CIPSI scheme; 
the zeroth order wave function involves the most important configurations, then 
all double excitations are performed on this multireference wave function t~o 
the most important ones are treated variationally, while the small contributions 
may be treated by 2 • 2 CIs between ~b0 and the configuration q~s. In the model 
problem, the multireference wave function will be the DCI solution and the 
double excitations will lead to the quadruply excited configurations. If all these 
quadruple configurations are included in the large CI diagonalization (which the 
authors consider as the most reliable result), this procedure is equivalent to the 
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diagonalization of the 3 x 3 matrix limited to q~0, 4~0 and 4~o, namely 

-04~/" h 0 h) 
AE 42(N-1)  . 

2&E 

When N is large enough the differences between the diagonal elements are 
negligible in comparison with the off-diagonal terms, and the lowest solution 
behaves as -~/3Nh; this procedure will multiply the DCI result by a factor 
~/3, intermediate between the Davidson's and Siegbahn's coefficients. The 
eigenvector of the (D + Q) CI tends to be 

1 1 1 

The relative weight of the gound state tends to diminish in a significant manner. 

One may notice that this result is worse than the corresponding "approximate" 
treatment which sums independently the contribution from all quadruple excita- 
tions; when all the quadruple excitations are taken into account through a set 
of 2 • 2 CI diagonalizations between t~Dci and ~bij, one would get N(N-1) /2  
increments given by the solution of identical 2 x 2 matrices 

4~DCI [ - x / N h  42/Nh] 
(~IJ 2AE J 

i.e. 

N ( N -  1) 2h 2 1 
x x ~4Nh. 

2 N 2AE+4Nh 

This procedure would therefore tend to double the DCI energy lowering i.e. to 
reach the result of the Siegbahn's correction of the DCI solution which remains 
a very poor result anyway. 

The convergence of the extrapolation procedures of the MRDCI algorithm is 
therefore very questionnable, since one may consider the inclusion of all double 
excitations in the Multireference wave function as an already formidable task, 
the result of which would remain perfectly deceiving for large N. The correction 
by the first Davidson's correction is not sufficient to insure a consistent behaviour. 

3.3, The QDMBPT approach with a DCI model space 

The QDMBPT is frequently derived in the complete model space [14] case, i.e. 
the effective hamiltonian is spanned by all the determinants built from the so 
called "valence" MOs; here the valence MOs are all the orbitals and the complete 
model space would be the full CI. Other formalisms [15] allow one to use 
arbitrary model spaces S, and in our case S might be defined as the Ground 
State plus all doubly excited determinants. The effective hamiltonian in this basis 
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will be built by perturbation. To the second order, the matrix elements of this 
(in principle non-hermitian) operator become 

H;~ (2~ = H , j  + E ( I [H[K)(K[HIJ)  
o o (16) 

K~s E j r - E K  

The diagonal terms are perturbed independently by the outside determinants, 
while off-diagonal terms may appear in H ~f~ between two determinants which 
interact with the same determinants outside of S. In our case the quadriexcited 
determinants &u which are doubly excited on both I and J will interact with 
the doubly excited determinants ~b~ and 4~J through a matrix element h. 

Any doubly excited determinant ~bx interacts with ( N - 1 )  quadruply excited 
determinants &ij(J # I )  resulting in a second order effective diagonal element 

H ~  = hE - (N - 1 - -  (17) 

while each couple of determinants (~bt, &j) interacts with a quadruply excited 
determinant Ou, resulting in 

~fr h z 
H =  - - -  t : J .  (18) 
rJ zkE 

The effective hamiltonian has equal diagonal elements, and equal off-diagonal 
elements as shown in Fig. 2. Again one may assume a circular symmetry to 
reduce the problem to a two-dimensional matrix. But now the energy of the 
totally symmetric Oo combination of doubly excited determinants is 

h 2 
(&o[He"lOo) = A E - ( N -  1)~--~ + ~ 1 (cb, lHe~l&,) 

1) h~ 
= A E - Z ( N -  Ate" (19) 

(&D IH[4o) remains unchanged, equal to ~/Nh, but the value of diagonal matrix 
element of &o is now decreasing rapidly, so that the asymptotic behaviour of 
the solutions are the following: 

- the lowest eigenfunction tends to concentrate on Oo, i.e. on the doubly excited 
determinants as desired from Eq. (11). The QDMBPT actually does not suffer 
the defect of the DCI as regard the wave function; this is expected since after 
convergence the QDMBPT effective hamiltonians must give the components of 
the exact wave function on the model space. 

- t he  energy tends to be - 2 ( N - 1 ) ( h Z / h E ) ,  i.e. to be proportional to N, as 
desired, but this energy is twice larger than what one would like. While the DCI 
tends to give a -100% error on the correlation energy, (i.e. a N -1/z decreasing 
fraction of the correlation energy per electron), the QDMBPT applied to the 
same model space gives a +100% error (i.e. makes it twice too large). 
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Fig. 2. Structure of the QDMBPT second order effective Hamiltonian limited to the DCI model space 

This defect may be understood from the fact that the effective hamiltonian tries 
to give a correct answer not only for the ground state, but also for all the doubly 
excited states, the mean energy of which actually is h E - ( n -  1)(h2/hE).  The 
Q D M B P T  deals with ns eigenvectors and eigenvalues if ns is the dimension of 
the model space. 

3.4. Correct trends from "Shifted O D ( M B ) P T "  and from (~DcIIH~fr]tODCI) 

Instead of defining Ho as the diagonal part of H, one might have taken the 
model space as degenerate at the zeroth order level, with a zeroth order eigen- 
value equal to the ground state zeroth order  energy (i.e. our conventional zero); 
the doubly excited zeroth order energies are shifted to zero 

HoCt = 0 • r  

which means that ( r 162  h E  

Then the second order effective hamiltonian restricted to the DCI model space 
takes a different form since the second order corrections resulting from the 
coupling between double and quadruple excitations are reduced by a factor 2. 
The effective second order corrected matrix becomes 

0 h . . .  h 

[ __h2 ] 2AEh2 2hE-h h E - ( N -  1)52-  . . .  

H teff(l+2) = 
$ m 

AE - (N h 2 - 

( 2 0 )  

The perturbative corrections by the quadruple excitations are one half of those 
previously obtained in the Q D M B P T  approach. The transformation into a 2 • 2 
matrix 

0 4Arh 2 
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shows that the ground state wave function is essentially located on the doubly 
excited determinants with an energy proportional to -N(hZ/AE).  

This result is satisfactory, and it was already obtained by Davidson [21] through 
a somewhat different approach, consisting in applying the partitioning technique 
[19] in a modified "energy-independent BK" approach to "dress" the doubly 
excited configurations by their interaction with the quadruple excitations (cf. 
also Ref. 22). We think that the present QDPT approach is more direct. It tends 
to suggest that the direct application of the QDPT may lead to a poor convergence 
and that, as long as one is interested in a single eigenstate it might be worthwhile 
to introduce some specific effective Hamiltonians essentially suited for the search 
of this peculiar eigenstate, the lowest orders giving more reliable results than 
the standard technique which is supposed to deal with n eigenstates simul- 
taneously. 

A satisfactory result is also obtained from a modified CIPSI algorithm in which 
one would build the effective Hamiltonian in the model space, in a classical 
manner, but where one would take the mean value of this effective hamiltonian 
on the variational wave function resulting from the diagonalization of H in the 
model space S. If S is the model space 

Ps = E IK)(KI 
K ~ S  

E ~ PsI-IPs#o = moo 

for 

K, L~s, (KIHea(2)]L) = Y. 
I ~ S  

(K[HII)(IIH[L) 
0 0 E K - E I  

In our model problem, O0 would be the DCI solution 0DCI. Turning back to Eq. 
(9), (16) and (17), it is clear that 

L 2 

(0DcIIH e~(2)[0DCI) ----- -- N ~,_. (21) 

It is well-known that QDPT may have a poor convergence, due to the "intruder 
states" problem [14c, 23]. As a typical example one may imagine [7b] CI matrices 
of the type 

0 h 

A E . h  

"n AE Ii h 
I 

(n + 1)AE h 
(n + 2)M~ 
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where it is impossible to define a reasonable border between the model space 
and the outside space when the ratio h/AE becomes large; the perturbation of 
the nth line becomes divergent and the diagonalization of H ~ will lead to 
unreliable results, the effective diagonal energies of the lowest right corner 
becoming too low. If one uses the previously suggested procedure, the variational 
~o has small components on these determinants and the mean value of ~Po on 
H e~ remains reliable when the perturbation expansion begins to diverge. This 
combination of CIPSI and QDPT approaches will be explored later on. 

4. Conclusion 

The poor behaviour of the DCI  result does not concern only the energy. The 
wave function is basically wrong since it overestimates grossly the weight of the 
ground state determinant with respect to the doubly excited determinants. This 
defect on the wave function makes the original Davidson's or Siebahn's correc- 
tions unable to correct the energy defect of the DCI approximation. The CIPSI 
algorithm when applied to the DCI  wave function restores a N proportional 
correlation energy, but one third of it is still lacking. The Quasi Degenerate 
Many Body Perturbation Theory when applied to a model space limited to the 
DCI  basis set also gives a N-proport ional  correlation energy but twice too large. 
Two multireference procedures seem to give correct N dependence; one is a 
"shifted" Q D P T  effective Hamiltonian, identical to the "energy independent 
BK approximation" already suggested by Davidson; the other one is a combina- 
tion of CIPSI and Q D P T  algorithms. However the research of a perturbative 
size consistent multiconfigurational approach to the CI problem still requires 
some progress. 

Acknowledgements. Thanks are due to Prof. E. Davidson for stimulating discussions during the 
NRCC workshop on Perturbation Theory. 
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